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TB-HIV Data 

 We used a total of 106 data points representing different measures collected at 

various time points and presented in the WHO Global TB Database and the WHO 2001 

through 2006 Global Reports. The different types of measures we used are:  

1) TB incidence per 100,000 persons per year (per 100K/yr) for 1990, 1995-20041;  

2) smear-positive TB incidence per 100K/yr for 1990, 1995-20041;  

3) TB incidence excluding HIV-infected persons (HIV+) per 100K/yr for 19901;  

4) TB incidence in HIV+ per 100K/yr for 1995-20041;  

5) smear-positive TB incidence in HIV+ per 100K/yr for 1995-20041;  

6) TB case notification rates per 100K/yr for 1980, 1981, 1983, 1985-20042;  

7) smear-positive TB case notification rates per 100K/yr for 1993-20041;  

8) TB deaths per 100K/yr for 1990, 1995-20041;  

9) TB deaths excluding HIV+ per 100K/yr for 19901;  

10) TB deaths in HIV+ per 100K/yr for 1995-20041;  

11) proportion of cases that are HIV+ in 19993, 20004, 20015, 20026, 20037, and 20042.  

 Because our model operates on a monthly time step, we summed over our predicted 

12 month model outputs to obtain the yearly estimates used to match the observed data 

points. We assigned an equal weight to all the 106 measures in order to minimize the 

assumptions we made throughout the study, although it is expected that certain measures 

and years may be more reliable than others. We originally included an additional 22 
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prevalence measures in our calibration. We opted to exclude them from the final 

calibration because these estimates require further assumptions in their calculation, and 

when included the resulting fit to the preferred measures of case notification, incidence 

and mortality became substantially worse.  

 

Model Structure 

Basic TB model 

 The following TB model structure description incorporates elements from Salomon 

et al.8 Our model accounted for the most relevant complexities of TB aetiology, clinical 

presentations, sociology, and treatment options.9-11 Moreover, the course of the disease 

could be vastly different in HIV-infected persons as compared to non-

immunocompromised individuals: in most persons TB remains a latent infection and has 

little effect on their health, but in immunocompromised persons TB infections are likely 

to become active, and potentially deadly.12-14 

 More specifically (Fig. S1A), susceptible persons could become infected with TB 

upon contact with infected persons, at a rate given by the force of infection jc , which 

varies across HIV stages (with j = 1 corresponding to HIV uninfected, and j = 2-5 

corresponding to HIV stages I-IV). This force was calculated at each time step from the 

current number of persons in a TB infectious category (see below, Model Formulation). 

We assumed the population mixed at random with density-independent contact rates, so 

transmission was frequency-dependent. Untreated persons with smear-positive active 

disease were the most likely to infect others (P), followed by the untreated smear-

negative (N). Smear-positive persons that failed treatment were partially infectious (PF), 
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and all other categories were not considered to transmit at measurable rates. Latent slow 

progressors and recovered individuals became reinfected at a reduced rate as compared to 

TB naïve persons (bj<1).  

 When infected, a person entered a latent slow (with probability pSj) or a fast latent 

category (with probability 1-pSj). Persons in the fast latent stage progressed rapidly to 

active disease at rate Sj, while those in the slow latent stage had a reduced endogenous 

reactivation rate Fj. Upon development of active TB, a fraction sPj of persons presented 

smear positive symptoms, and a fraction 1- sPj presented smear negative symptoms. 

Individuals infected with HIV, particularly in the advanced stages, were more likely to be 

smear-negative due to their reduced immunity.12,15 Smear-negative persons converted to 

smear-positive at rate σj. A fraction d of persons with active TB, regardless of their smear 

category, entered the detectable compartment, and a fraction 1-d the non-detectable 

compartment. This partition represented any kind of impediment to initiating treatment, 

such as subclinical symptoms or lack of access to health care due to long distance from 

the home to a TB clinic, social stigma associated with TB infection, financial trouble due 

to loss of work days while treated, case-finding effort on behalf of the local health 

services, etc.16-20 The distinction between smear positive and smear negative cases was 

retained throughout those compartments categorizing cases that were either active, on 

treatment, or partially cured, in order to provide flexibility in accounting for any 

differences in infectiousness, detectability, response to treatment, relapse, etc. Active 

cases recovered spontaneously without treatment and entered the slow latent 

compartment at rate j.  
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 At each time step cases moved from the detectable category into treatment according 

to the case-detection rate (θj), and then entered a DOTS (with probability tP for smear-

positive and tN for smear negative) or a non-DOTS program (with corresponding 

probabilities 1-tP and 1-tN). The model was flexible regarding treatment duration, and in 

this particular study we were investigating treatment durations of 6 months for standard 

DOTS and 8 months for standard non-DOTS. Patients defaulted at each time step with a 

certain probability δm, or took their medication throughout the entire course. Upon default 

or completion persons either (1) failed treatment and returned directly to the active 

category (with probabilities qPDj for smear-positive persons on DOTS, qPNj for smear-

positive persons on non-DOTS, qNDj for smear-negative persons on DOTS, qNNj for 

smear-negative persons on non-DOTS, or qcomplete,j), (2) entered a transiently recovered 

smear-positive (partially infectious) or smear-negative (non-infectious) category (with 

corresponding probabilities to (1) above vkl,j or vcomplete,j), or (3) if finished treatment 

completely recovered in which case they were non-infectious (with probability  

scomplete,j = 1 - vcomplete,j - qcomplete,j). Transiently recovered persons relapsed back to active 

at rate ρj, and entered the detectable and non-detectable compartments corresponding to 

their smear status according to the same proportions as originally defined for those 

progressing to active from the latent stages. As in Salomon et al.8, we did not track 

treatment history explicitly or modeled distinct retreatment regimens. Persons that 

completely recovered were assumed to be partially immune to reinfection. All categories 

suffered the same natural background mortality (), and active untreated and treated 

cases suffer TB associated mortality to varying degrees across HIV stages (Pj, Nj, PD,j, 

PN,j, ND,j, NN,j). 
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Basic HIV model 

 The impact of TB on the epidemiology of HIV is not as substantial as that of HIV on 

TB.21-23 Thus, we did not model HIV transmission dynamics explicitly, but incorporated 

it into the model as an exogenous input using a defined incidence recruitment process that 

generated historical HIV prevalence patterns. We opted to use those patterns reported 

most recently for Kenya by Cheluget et al.24, which consist of an increasing trend to  

10-11% prevalence in 1997-98, followed by a decline to a present level of approximately 

6.7% (Fig. S2 and Fig. 3 in Cheluget et al. 200624).  

 Upon infection with HIV, persons progressed through the 4 HIV disease stages 

defined by the World Health Organization (Fig. S1B) according to the following time 

lines25: 24, 21, 66 and 9 months for HIV stages I, II, III and IV, respectively. The basic 

TB model was therefore replicated 5 times, once for HIV uninfected and once for each 

HIV infected stage, for a total of 42x5 different TB-HIV categories. At each monthly 

time step (Fig. S1C) HIV uninfected persons became HIV-positive and transitioned to 

HIV stage I according to the given incidence rate, progressed through the 4 disease 

stages, and ultimately died and exited the system. Because Currie et al.26 grouped the 

uninfected and early HIV-infected (stages I and II), the time lag between the HIV and TB 

declines is longer than in our study, where we allowed for the potential increase in 

susceptibility to TB infection and progression to occur in earlier HIV stages.14,27 In the 

model, HIV induced death mimicked a TB process in that persons in HIV stage IV died 

of AIDS according to a fixed HIV mortality rate under the competing rates formulation. 

Accordingly, persons died of either TB or HIV, but not of both (Table S3).  
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Model Formulation 

 Under our model formulation all TB processes, and both background and HIV 

mortality, act as competing rates within a continuous deterministic framework that is 

updated on discrete monthly time steps. We used a discrete time difference equations 

formulation, because it is better suited to modeling precise durations of treatment than an 

exclusively continuous formulation using ordinary differential equations (see Methods, 

main Article).8,28,29 This approach provides an approximation to the exact solution of a 

deterministic model which allowed HIV progression of stages I to IV to occur 

simultaneously to the progression through the various TB categories, but restricted each 

individual to undergo one TB state transition (and background and HIV mortality) per 

time step. That is, at each time step, any given individual could progress in both diseases, 

in only one, or in neither (Table S3). Below we outline the steps we followed to 

determine, under this competing rates scheme, the specific rates at which individuals 

progressed through the different categories of the system when undergoing various 

multiple processes simultaneously. 

Competing rates example. Consider a pool of individuals C, subject to two competing 

processes: they go to class A at per capita rate , and to class G at per capita rate .  The 

differential equation describing class C is thus: 

 C
dt

dC    

This simple equation can be solved exactly, yielding: 

  ttCttC  exp)()(  
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If t = 1 timestep, the proportion of individuals remaining in class C at the end of the 

timestep is exp[(+)].  The proportion of individuals leaving class C is 1exp[(+)], 

of whom a fraction /(+) go to class A and /(+) go to class G. 

To update the system we use the following convention. We calculate the total 

leaving rate for each model class, a vector called ‘exit_rates’; for the above example the 

value of exit_rates would be +.  In each time step, beginning with a state vector Xinit, 

we calculate the number of individuals that remain in class p as: 

Z[p] = exp(exit_rates[p]) Xinit[p]. 

The number leaving class p is {1exp(exit_rates[p])} Xinit[p]. The individuals that leave 

each class now distribute themselves into the different TB classes according to the rates 

determined by each process. For compactness of notation we introduce an intermediate 

vector Y with elements that are normalized by the total exit rate per state: 

Y[p] = (1/exit_rates[p]){1exp(exit_rates[p])} Xinit[p]. 

Now if the per capita transition rate from class p to class q is pq , the number of 

individuals making the transition from p to q is simply pqY[p].  In the above example, 

exit_rates[C] = +, so Z[C] = exp[(+)] Xinit[C] and Y[C]={1/(+)}{1exp[(+)]} 

Xinit[C].  The transition rate from class C to class A is , so the number of individuals 

making that transition in one time step is Y[C]={/(+)}{1exp[(+)]}Xinit[C].

 

Model equations 

 The state vector X represents the number of individuals in each of the 210 TB-HIV 

states described in Table S1 and depicted in Fig. S1. Parameters used in the model are 
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defined in Table S2.  The total population is N  X[i, j]
j1

5


i1

42

 , where i = TB category 

and j = HIV category. 

The force of infection jc , describing the hazard rate of infection for each 

susceptible individual (where cj is the factor corresponding to each HIV stage, Table S2), 

is calculated from the weighted sum of all infectious classes: 

   

.],42[],25[],[],[

...],[],[],8[],5[],7[],4[
1

NFPF

41

34
NN

33

26
ND

24

17
PN

16

9
PDNP

5

1





















jXjXjmXjmX

jmXjmXjXjXjXjX
N

mm

mmj





 
We now apply the competing rates formulation described above.  The total exit rates 

for each state are described in Table S3. We label the state vector at the beginning and 

end of the time steps Xinit and Xnext, respectively, and reconcile this from one interval to 

the next by the relationship: 

  Xinit[i,j]t+1 = Xnext[i,j]t, 

where the subscript t refers to the interval under consideration. For simplicity we drop the 

time t subscript throughout. The number of individuals remaining in each class is then 

given by the vector Z with elements for HIV categories 1-4:  

      Z[i,j] = exp(exit_rates[i,j]) Xinit[i,j] for all i and  j=1,…,4. 

For the final HIV stage IV (category 5) we also needed to account for the additional death 

rate from AIDS (Table S2). This additional outflow occurred simultaneously to the 

other TB processes, but because it implies permanent removal from the system it was not 

reincorporated into the inflows ξi,j (see below): 

      Z[i,5] = exp(exit_rates[i,5] - H) Xinit[i,5] for all i. 
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The intermediate vector Y has the following elements for HIV categories 1-4: 

Y[i,j] = (1/exit_rates[i,j]) {1exp(exit_rates[i,j])} Xinit[i,j], for all i and  j=1,…,4, 

and for HIV category 5 they are: 

Y[i,5] = (1/exit_rates[i,5]+H) {1exp(exit_rates[i,5]-H)} Xinit[i,5], for all i. 

We then calculated the state vector Xnext. For clarity purposes, we first describe the 

equations ξi,j representing the inflows to each category due to TB infection and treatment 

(these equations are identical for HIV stages j = 1…5):   

 ξi,j[1,j] = N 

 ξi,j[2,j] =  pS(Y[1,j] + bY[6,j]) + (Y[4,j] + Y[7,j] + Y[5,j]+Y[8,j]) 

 ξi,j[3,j] =  (1pS) (Y[1,j] + bY[2,j] + bY[6,j]) 

 ξi,j[4,j] =  sP(1dP) (SY[2,j]FY[3,j]) + Y[5,j] + (1dP)Y[25,j] 

 ξi,j[5,j] = (1sP)(1dN) (SY[2,j]FY[3,j]) + (1dN)Y[42,j] 

 ξi,j[6,j] = 

        



8

1
NNDD ],33[],16[1],25[],8[1

m

jmZjmZKvjmZjmZKv  

ξi,j[7,j] = sP dP (SY[2,j]FY[3,j]) + Y[8,j] + dPY[25,j] 

ξi,j[8,j] = (1sP) dN(SY[2,j]FY[3,j]) + dNY[42,j] 

 ξi,j[9,j] =  tPY(7,j) 

 ξi,j[9 +m,j] = Z[9+m1,j] (1KD[m]),  m = 1,2,…,7 

 ξi,j[17,j] = (1tP)Y(7,j) 

 ξi,j[17 +m,j] = Z[17+m1,j] (1KN[m]),  m = 1,2,…,7 
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 ξi,j[25,j] = 

 



8

1
NNDDND ],16[][],8[][],16[],8[

m

jmZmKvjmZmKvjmYjmY   

 ξi,j[26,j] =  tNY(8,j) 

 ξi,j[26 +m,j] = Z[26+m1,j] (1KD[m]),  m = 1,2,…,7 

 ξi,j[34,j] = (1tN)Y(8,j) 

 ξi,j[34 +m,j] = Z[34+m1,j] (1KN[m]),  m = 1,2,…,7 

 ξi,j[42,j] = 

 



8

1
NNDDND ],33[][],25[][],33[],25[

m

jmZmKvjmZmKvjmYjmY   

To account for the simultaneous occurrence of HIV infection and progression, we 

introduced the parameter Ψj (Table S2). The first element of Ψj reflected HIV incidence 

values that generated reported HIV prevalence levels24, the next 3 elements represented 

progression of HIV stages I-III25, and the fifth element had a value of 0, since there is no 

transition beyond stage IV (only death, which was accounted for separately as a 

competing rate to TB process transitions, see above and Table S3). At each time step the 

new Xnext was calculated by the sum of the persons staying in the corresponding TB and 

HIV category, those progressing in only one disease, and those progressing in both. 

Accordingly, the HIV-uninfected category is updated with those persons that remain HIV 

uninfected (1- Ψ1 and either do not progress in their TB category (Z[i,1]) or do (


42

1
1,

i
i ): 

Xnext[i,1] = (1- Ψ1 (Z[i,1]+


42

1
1,

i
i )         for i = 1-42. 
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Likewise, the HIV infected categories are updated with persons that remain in that same 

HIV category (1- Ψj and either do not progress in their TB category (Z[i,j]) or do 

(
 

42

1

5

2
,

i j
ji ). The difference with the HIV uninfected category (j = 1 above) lies in that 

now we also have to account for those persons that either became infected or progressed 

from the previous HIV stage (Ψj-1 together with their TB dynamics, i.e., include those 

persons that did not progress in their TB category (Z[i,j-1]), or that did (
 



42

1

5

2
1,

i j
ji ):   

 Xnext[i,j] = (1- Ψj (Z[i,j]+
 

42

1

5

2
,

i j
ji ) + Ψj-1 (Z[i,j-1]+

 


42

1

5

2
1,

i j
ji )  

                                                                                                  for i = 1-42, and j = 2-5. 

At any given time point, the number of persons in each HIV disease stage was 

determined by the year since the HIV epidemic began, by the average time spent in each 

HIV disease stage, and by the HIV prevalence. People become infected (i.e., move from 

the HIV uninfected stage into the HIV infected stage I, a process which corresponds to 

HIV incidence Ψ), progress through the subsequent HIV stages II-IV (Ψ Ψ) and 

ultimately die of HIV () according to the time frames given by Morgan et al.25 for 

Africa. Our model formulation allows us to emulate the historical estimates of HIV 

prevalence (i.e., the sum of all the persons in HIV stages I through IV) as reported for 

Kenya24 by altering the HIV incidence (Fig. S2).  

In the equations referring to treatment states in the model, we include the “switch” 

variables KD and KN, which are vectors containing the monthly probabilities that a course 

of treatment ends.  For conventional drug therapies, these are: 

KD=[0 0 0 0 0 1 0 0] for six-month DOTS treatment, and  
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KN=[0 0 0 0 0 0 0 1] for eight-month non-DOTS treatment. 

 New TB cases were computed as the sum of the flows from the latently infected, 

both slow and fast, and of the progressors from the failed treatment class, both smear-

positive and smear-negative: 

   



5

1
422532_

j
jNjPjFjS YYYYTBcasesNew  . 

 

Model Calibration  

 The conventional measure for goodness-of-fit, GF = (Obs - Exp)2/Exp, places greater 

weight on instances where observed values exceed expected values (Obs > Exp) than 

those where Obs < Exp. We used a related measure that is symmetric with respect to Obs 

versus Exp (see Methods, main Article) at the expense of losing the statistical 

convenience of the chi-squared distributional properties of the conventional measure, 

because the observed values are not necessarily more reliable than the expected when the 

former incorporate numerous uncertainties related to disease surveillance while the latter 

integrate numerous sources of knowledge via a mathematical model. 

 Working in a gradual process with our candidate parameter sets, we evaluated the fit 

of the model outcome for each set to the TB and TB-HIV Kenyan measures spanning 

1980 to 2004 by a feedback calibration process. Each parameter set was run as a separate 

simulation that started in the initial virgin phase, and progressed through the subsequent 

three phases characterizing the TB epidemic in Kenya during the last century and early 

part of the 21st century (i.e., until 2006). If any parameter values in the best goodness-of-

fit (see Methods and below) set were at the margin of the pre-defined ranges, we shifted 

the range by 5% or 10%, depending on the breadth of the original range. Additionally, we 
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restricted the original range if the 20 best GF parameter sets were in a close 

neighbourhood. We generated additional parameters sets with the LHS method, whose 

values fell within the constraints of the new parameter ranges, and ran further 

simulations. This approach permitted us to modify our designation of the parameter 

ranges characterizing the person-level processes according to the fit of the model to the 

25-year country-level data. This iterative procedure involved >30,000 simulations. For 

the calibration with the final ranges, we ran >6,000 parameter sets. In our subsequent 

calibration conducted to match the model output to the full 1980-2004 TB and TB-HIV 

dataset, we used the same final parameter sets (and therefore the same parameter ranges 

and constraints) derived from our earlier fit to the reported HIV trends.24 However, in this 

last calibration we modified the HIV incidence such that HIV prevalence increased 

monotonically at different rates to a final 2004 value that ranged between 10%-25%, 

resulting in >37,000 runs. 

 When comparing the results obtained for the best-fitting parameter sets to the TB and 

TB-HIV measures up to 1997 as compared to the full data set (Table S2), we observed: 

(i) susceptibility to becoming TB infected was higher in stage II, although smaller for the 

other 3 infection force values across HIV stages (λj), and interestingly this parameter had 

a greater impact on TB incidence changes in the full dataset vs. the pre-1997 dataset 

(Table 1), (ii) patients transiently recovered were more infectious (βTR = 0.54 vs. 0.26) 

and (iii) default rates were higher (bD = 0.027 vs. 0.02). Otherwise the parameter 

estimates for the two calibrations were very similar for HIV uninfected and HIV stages I 

and II. Values were less similar for parameters characterizing HIV stage IV. This is partly 
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due to these being parameters of lesser impact (Table 1), which is compounded by the 

inherent limitations of the calibration to country-level data. 

 We were also interested in understanding how the country-level calibration to the 

pre-1997 and the full datasets resolved the relative values of the parameters 

characterizing TB processes in HIV infected persons in stages I and II. With this process 

in essence we are deriving individual-level, clinical parameters for the different HIV 

stages from population-level data. It is interesting to note that although the relative 

magnitudes of the pertinent 8 parameter types across HIV stages I and II were not 

constrained in the calibration (λj, pS,j, πj, ρj, sP,j, σj, θj, qc,j, where j = 0 indicates HIV 

uninfected, and j = 1-4 indicates HIV stage I-IV, respectively, see Table S2 for ranges), 

when we calibrated the model to the pre-1997 dataset all parameters ordered themselves 

in the expected increasing or decreasing order according to HIV stage. When we used the 

full dataset only two parameters had their values inverted with respect to those expected 

under a progressive immune deterioration from the moment of HIV infection. Most 

importantly, the case-detection rates θ1 and θ2 had inverted values: θ1 = 0.18 > θ2 = 0.16 

(in any case the ranges for θ1 and θ2 completely overlapped, while those of the other 

parameters did not, see Table S2). When we exchanged the values for θ1 and θ2, the GF 

became worse. Therefore, under this calibration the strikingly non-matching HIV and TB 

trends are best tracked by assuming that more TB infections are detected in persons in 

HIV stage I than in HIV stage II. 

 In addition, the rates for spontaneous recovery to latency in HIV stages I and II, 1 

and 2, were also inverted in relative magnitude as compared to those expected under the 

general HIV progression scenario (0.119 and 0.112, respectively). We believe this 
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ordering reflects the fact that we cannot work with an infinite sample of parameter sets 

covering all the possible parameter combinations―due to computational limitations we 

have to settle for a limited sample of combinations, obtained in our case with the LHS 

method from all the possible combinations of the parameter space―rather than actual 

epidemiological interpretations of the calibration process to the reported disease trends. 

There are two reasons for this argument: a) these two values have very similar 

magnitudes, b) according to the sensitivity analysis these parameters do not have a great 

impact on TB incidence, so that small differences between them are not expected to have 

a large impact on the epidemic’s course and therefore on their predictive value (Fig. 4 

and Table S4), and c) the GF score decreased when we exchanged the values. 

 Under the calibration to reported HIV trends, our model predicts that in 2004 the 

proportion of HIV infected persons among the TB infected is 43%. This value is closer to 

the 50% value reported for countries of high HIV prevalence in the general population30 

than to the 29% estimate for Kenya.2 Moreover, recent surveillance efforts in Kenya 

indicate that past surveys may have seriously underestimated the proportion of HIV 

infected among TB cases. In essence, even though under our calibration to the declining 

HIV epidemic the model is not matching up to the reported increase in TB case 

notifications (Fig. 1), it still needs to account for the resulting lower-than-reported TB 

trends by having a greater-than-reported proportion of TB-HIV coinfected people.  

 In our calibration to the monotonically increasing HIV epidemic we focused on 

matching the TB case notifications. Accordingly, the fit to the TB case notifications 

improved substantially (0.42 vs. 0.08), while the overall fit to the full dataset worsened 

(from 6.2 to 7.4) in comparison to that of the best-fit parameter set under the calibration 
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to reported HIV trends. The measures most responsible for the increase in the GF 

involved TB measures in HIV infected persons in the most recent years, particularly TB 

deaths in HIV infected and the proportion of TB cases that are HIV infected. When these 

two measures are not included in the calculation of the GF, then the overall fit to the full 

dataset under the monotonically increasing HIV epidemic is better than that under the 

reported HIV trends (4.9 vs. 5.5). Most significantly, the fit to the TB incidence in later 

years, and the fit to TB mortality in both early and later years, improved under the 

calibration to the monotonically increasing HIV epidemic. 

 

Assumptions and limitations of the study 

As with practically any mathematical analysis of a biological system, our model 

formulation cannot capture its full complexity, and the overall modeling exercise entails 

various limitations. We cannot exclude the possibility that the mismatch between 

reported trends and model output arises because the model does not accurately reflect the 

epidemiological mechanisms at play.  In this light, however, it is important to note that 

another model of TB-HIV co-dynamics (with a different structure from the model 

reported here) is also incapable of reconciling declining HIV prevalence with increasing 

TB incidence (Currie, pers. comm.).  To further address these concerns, we extended our 

investigation to consider TB-HIV trends across Africa (see main Article). We were 

however careful to design a model that reflected the key processes that would permit us 

to enhance our understanding of TB-HIV co-epidemiology, particularly in regards to our 

original question (see main Article). An additional limitation to studies of this nature is 

the great uncertainty in the parameter values, which requires us to conduct a calibration 
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in order to identify the optimum parameter set for portraying TB-HIV trends in a 

particular setting (i.e., Kenya in our case). This uncertainty is not only due to our limited 

knowledge of the system, but also to the considerable heterogeneity regarding TB and 

HIV trends between and within countries, both in space and time (see main Article). Even 

though the calibration enables us to track reported epidemiological trends more precisely, 

it is also laden with assumptions because for many parameters we do not have a proper 

understanding of the minimum and maximum numerical values they can have (i.e., their 

valid ranges, see above). Moreover, there could be compensatory effects among the 

parameters that could lead us to choose a parameter set that does not correspond to the 

actual values characterizing the process in the field, but that tracks the reported trends 

(themselves questionable, see below) with high fidelity. Because of the important 

limitations regarding our biological understanding of the system, the most appropriate 

way to modify the model to provide a better fit to reported TB-HIV trends comes from 

increasing our knowledge on TB-HIV interactions and public health control and 

surveillance, and not intrinsically from an analysis of the model. 

 When interpreting the results of the sensitivity analysis (see main Article) we must 

keep in mind that it offers information not only on the biological processes and public 

health control measures with the greatest potential to impact our measure of choice (e.g., 

TB incidence), but also on how our uncertainty in the parameter estimates impacts the 

uncertainty in the model outcome.26,31,32 Consequently, given our large degree of 

uncertainty regarding both the most suitable parameter ranges characterizing TB-HIV 

processes, and the reliability of nationwide epidemiological trends, our results should be 

interpreted with caution. Moreover, as with any sampling method, the sampling strategy 
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for the parameters will impact the distribution of outcomes (see above). As we refine our 

knowledge on TB and HIV interactions we will limit our sources of uncertainty regarding 

the co-dynamics of the two pathogens. Accordingly, the parameter ranges should then 

reflect to a lesser degree our lack of understanding of the system, and more the actual 

temporal and spatial variation characterizing TB-HIV co-dynamics. More precise 

knowledge on parameter values will enable more robust policy recommendations to be 

derived from sensitivity analyses of epidemic models. 
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Table S1.  State variables for TB and HIV.   
 

TB State (i) Abbrev. Definition 

1 S TB susceptible 

2 IS TB infection, slow progressor (latent) 

3 IF TB infection, fast progressor 

4 AP Smear-positive active TB, not detectable 

5 AN Smear-negative active TB, not detectable 

6 R TB recovered 

7 APd Smear-positive active TB, detectable 

8 ANd Smear-negative active TB, detectable 

9-16 TPD Smear-positive TB case undergoing DOTS treatment, months 1-8 

17-24 TPN Smear-positive TB case undergoing non-DOTS treatment, months 1-8 

25 TPF TB treatment failure, smear-positive case 

26-33 TND Smear-negative TB case undergoing DOTS treatment, months 1-8 
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34-41 TNN Smear-negative TB case undergoing non-DOTS treatment, months 1-8 

42 TNF TB treatment failure, smear-negative case 

HIV State (j) Abbrev. Definition 

1 U HIV uninfected 

2 I HIV infected stage I 

3 II HIV infected stage II 

4 III HIV infected stage III 

5 IV HIV infected stage IV 

 

The distribution of the population across different TB states is presented as a 42-element vector, while that of HIV as a 5-element 

vector, for a total of 42x5 combined TB-HIV categories.
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Table S2. Model parameters.  

 

 Definition and units 
when applicable♠ 

HIV 
(j = 1) 

HIV+ stage 
I (j = 2) 

HIV+ stage 
II (j = 3) 

HIV+ stage 
III (j = 4) 

HIV+ stage 
IV (j = 5) 

Source 

Population parameters 

 total population growth 
(persons per 1000 
individuals per year) 

64 
(computed to achieve reported population growth rate) 

NA 

 natural mortality rate per 
year  

0.016 33 

HIV parameters 

Ψj, 



HIV incidence Ψ (rate at 
which persons become 
newly infected with HIV) 
progression Ψ(rate of 
progression to next HIV 
stage) 

calibration to 
trends in 24 

0.0417 0.0476 0.0152 0* 
 

25,34 

 HIV mortality rate per year NA NA NA NA 0.1111 25,34 
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TB infection parameters 

jc  force of infection – 
computed** (rate at which 
persons become newly 
infected with TB) 

  1.26 


   

1.34 

 
  

 

 
  

 


   

calibration 

P number of new infections 
per untreated SS+ case 

0.78 {0.79} 
(0.7-1.05) 

a

N number of new infections 
per untreated SS case 

0.15P b

PD 

ND 

PN 

NN 

NF 

number of new infections 
per treated case and per 
SS case that has failed 
treatment 

0 8 

PF number of new infections 
per SS+ case that failed 
treatment 

0.26 {0.54} 
(0.15-0.92) 

8, a and 
calibration 

b relative susceptibility to 
reinfection for latent slow 
progressors and recovered 

0.35 
 

0.5 0.6 
 

0.7 
 

0.8 
 

a
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TB natural history parameters 

pS proportion of new TB 
infections entering latent 
slow-progressor pool 

0.82 {0.84} 
(0.8-0.95) 

0.59 {0.6} 
(0.55-0.85) 

0.58 {0.57} 
(0.45-0.75) 

0.43 {0.36} 
(0.25-0.45) 

0.28 {0.05} 
(0.0-0.3) 

a and  
calibration 

S breakdown rate for slow 
progressors (endogenous 
reactivation) 

.00013/12 
 

0.0002/12 
 

0.001/12 
 

.06/12 
 

.1/12 
 

26 and a 

F breakdown rate for fast 
progressors 

0.88/12 
 

0.9/12 
 

1/12 
 

2/12 
 

4/12 a and calibration 

sP proportion of new active 
cases with SS+ disease 

0.51 {0.52} 
(0.45-0.57) 

0.48 {0.48} 
(0.425-
0.525) 

0.48 {0.48} 
(0.40-0.50) 

0.40 {0.42} 
(0.20-0.45) 

0.20 {0.11} 
(0.0-0.20) 

a, b and 
calibration 

d proportion of new cases 
entering detectable pool 
a) preDOTS, no HIV 
(1960-1979) 
b) preDOTS, HIV (1980-
1994)  
c) DOTS, HIV (1995-
2004)  

 
 

0-0.5 
 

0.5-0.6 
 

0.6-0.8 
 

 calibration 
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 rate of conversion from 
SS to SS+ disease  

0.0019 
{0.0019} 
(0.0016-
0.0021) 

0.0014 
{0.0015}  
(0.0013-
0.0018) 

0.0012 
{0.0015} 
(0.0011-
0.0016) 

0.001  
{0.0009} 
 (0.0007-
0.0011) 

0.0004 
{0.0005} 

 (0.0-0.0007) 

calibration 
 
 

 rate of spontaneous 
recovery to latency 

0.032 
{0.032} 
(0.017-
0.033) 

0.017 
{0.015} 
(0.012-
0.020) 

0.008 
{0.012} 
(0.007-
0.016) 

0.005 
{0.006} 
(0.0025-
0.0065) 

0.001 
{0.0001} 

(0.0-0.0011) 

a and  
calibration 

P TB mortality rate, 
untreated SS+  

0.3/12 0.3/12 0.32/12 0.8/12 1/12 a and 26 

N TB mortality rate, 
untreated SS  

0.2/12 0.2/12 0.21/12 0.8/12 1/12 calibration 
 

 
TB treatment parameters 

 case-detection rate  0.12 {0.09} 
(0.08-0.15) 

0.14 {0.18} 
(0.10-0.20) 

0.17 {0.16} 
(0.10-0.20) 

0.3 {0.25} 
(0.20-0.40) 

0.75 {0.45} 
(0.40-0.80) 

calibration 
 

tP proportion of SS+ treated 
cases entering DOTS 
programs 
a) preDOTS, no HIV  
b) preDOTS, HIV  
c) DOTS, HIV  

 
 
 
0 
0 

0-0.56 

2 
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tN proportion of SS- treated 
cases entering DOTS 
programs 
a) preDOTS, no HIV  
b) preDOTS, HIV  
c) DOTS, HIV  

 
 
 
0 
0 

0-0.71 

2 

6 

 
default rate for 6- and 8-
month programs, month 
m   

6 = monthlyFactor*baseDefault, where 
                       monthlyFactor***           m (1) =  1 
                                                               m (2) = 3 
                                                               m (3) = 2 
                                                               m (4-8) = 1 
                      baseDefault       D = 0.02 {0.027} (0.01-0.03) 

8 and calibration 
 

qPD 

qPN 

[m=1:8] 

proportion of SS+ cases 
defaulting from month m 
of treatment that return to 
active disease  
                               m = 1   
                               m = 2 
                               m = 3 
                               m = 4 

m = 5 
m = 6 
m = 7 
m = 8

 
 
 
 

0.8 
0.5 
0.3 
0.2 
0.1 
0.01 
0.01 
0.01 

 
 
 
 

0.8 
0.6 
0.5 
0.4 
0.35 
0.3 
0.3 
0.3 

 
 
 
 

0.85 
0.75 
0.7 
0.65 
0.6 
0.5 
0.5 
0.5 

 
 
 
 

0.95 
0.9 

0.875 
0.85 
0.825 
0.8 
0.8 
0.8 

 
 
 
 
1 
1 
1 
1 
1 
1 
1 
1 

2,8 and 
calibration 



EPIDEMICS 2008                                                                                                                Sánchez et al.  

 31

qND 

qNN 

[m=1:8] 

proportion of SS- cases 
defaulting from month m 
of treatment that return to 
active disease 

qN1 = 0.9qP1 qN2 = 0.9qP2 qN3 = 0.9qP3 qN4 = 0.9qP4 qN5 = 0.9qP5 
2,8 and 

calibration 

vkl 

[m=1:8] 
proportion of SS+ and 
SS- cases defaulting 
from month m of 
treatment that enter 
failed treatment class 

vkl = 1 – qkl, where  k = P represents SS+ 
                               k = N represents SS- 

                                   l = D represents DOTS 
                                          l = N represents non-DOTS 

2,8 and 
calibration 

qcomplete proportion of cases that 
return to active disease 
after completing 
treatment 

0.12 {0.14} 
(0.05-0.15) 

 
 

0.18 {0.19} 
(0.10-0.20) 

0.21 {0.25} 
(0.15-0.25) 

0.26 {0.31} 
(0.25-0.35) 

0.43 {0.35} 
(0.35-0.50) 

2,8 and 
calibration 

vcomplete proportion of cases that 
enter failed treatment 
class after completing 
treatment 

0.14 {0.13} 
(0.05-0.20) 

 

0.10 {0.21} 
(0.10-0.23) 

 

0.21 {0.17} 
(0.15-0.25) 

 

0.33 {0.33} 
(0.20-0.35) 

 

0.34 {0.32} 
(0.30-0.50) 

 
 

2,8 and 
calibration 

scomplete proportion of cases cured 
after completing 
treatment 

 scomplete = 1 - vcomplete - qcomplete  

 relapse rate from failed 
treatment class to active 
disease 

0.088 
{0.083} 

(0.06-0.10) 

0.118 
{0.119} 
(0.097-
0.127) 

0.126 
{0.112} 
(0.105-
0.135) 

0.172 
{0.141} 
(0.135-
0.175) 

0.176 
{0.222} 
(0.175-
0.325) 

8 and calibration 
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PD TB mortality, SS+ cases 
on DOTS  treatment 

m = 1 
m = 2 

m = 3-8 

 
 

0.320/12 
0.160/12 
0.040/12 

 
 

0.320/12 
0.160/12 
0.040/12 

 
 

0.424/12 
0.216/12 
0.040/12 

 
 

0.536/12 
0.264/12 
0.048/12 

 
 

0.800/12 
0.480/12 
0.056/12 

 
 

calibration 
 
 

ND TB mortality, SS- cases 
on DOTS  treatment 

m = 1 
m = 2 

m = 3-8 

 
 

0.160/12 
0.080/12 
0.040/12 

 
 

0.160/12 
0.080/12 
0.040/12 

 
 

0.320/12 
0.160/12 
0.040/12 

 
 

0.480/12 
0.240/12 
0.048/12 

 
 

0.800/12 
0.480/12 
0.056/12 

 
calibration 

 

PN TB mortality, SS+ cases 
on non-DOTS treatment 

PN = 3PD calibration 
 

NN TB mortality, SS cases 
on non-DOTS treatment 

NN = 3ND 

 
calibration 

 

 

Throughout this study we used: a) parameters of fixed value, b) the best-fit parameter values in the pre-1997 calibration, c) the best-fit 

parameter values in the full dataset calibration in brackets {}, and d) the ranges for those parameters whose values were allowed to 

vary in the calibrations in parenthesis (). Greek symbols represent rates, lower case Roman symbols represent proportions. Vectors 

indices are shown in square brackets []. All rates are monthly unless specified otherwise.  Constraints for the calibration ranges are 
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given below. Abbreviations used are NA: not applicable, SS-: smear-negative TB, SS+: smear-positive TB, HIV-: HIV uninfected, 

HIV+: HIV infected. 

 

♠ for parameters representing rates or proportions, we multiply the parameter value by the total number of persons in the category from 

which the corresponding process is exiting, in order to obtain the total number of persons at each time step that exits that category due 

to that particular process 

* a value of 0 was given to nullify the impact of the last element of this vector, because persons die from AIDS and exit the system 

once they reach HIV stage IV, see Model Formulation 

**  = the force of infection, was computed at each monthly time step, see Model Formulation 

*** m  = month of treatment, which ranges from 8 months for non-DOTS programs and 6 months for present-day DOTS programs 

a parameter values and ranges adapted from Dye and Williams, 200035 and Dye et al., 1998 36 

b parameter values and ranges adapted from Murray and Salomon, 199837 

Calibration constraints in relation to HIV stages:  

 HIV stage I, HIV stage II < HIV stage III < HIV stage IV for jc            

 HIV uninfected > HIV stage I, HIV stage II > HIV stage III > HIV stage IV for parameters pS, π, ρ, θ, qcomplete, scomplete 
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 HIV uninfected < HIV stage I, HIV stage II < HIV stage III < HIV stage IV for parameters for sP, σ   

 βTR < βP       

These constraints were applied to all the pertinent parameters allowed to vary in the calibration, except for vcomplete (see above) which 

was unconstrained given that its value is calculated from scomplete + vcomplete + qcomplete = 1, and both scomplete and qcomplete (see above) 

were constrained as described here. In our analysis we only used those parameter sets generated by the Latin Hypercube Sampling that 

conformed to these constraints.



EPIDEMICS 2008                                                                                                                Sánchez et al.  

 35

 

Table S3.  Exit rates from TB and HIV states in the model.  

TB 

State 

TB exit rates HIV State HIV exit rates 

1  1 Ψ1

2 b(1-pS) + S  2 Ψ2

3 F  3 Ψ3

4  P  4 Ψ4

5  + N 5  Ψ5 = 0)

6 b   

7  +  P   

8 + N   

9-16 PD +   

17-24 PN +   

25  +   

26-33 ND +   

34-41 NN +   

42  +   
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Table S4. Sensitivity analysis results in terms of partial rank correlation coefficients 
(PRCC).  
 
 

PRCC 
  (a) 1997 (b) 2004 

force of infection 
1 λ1 0.179 0.207 (18) 
2 λ 2 0.128 0.163 
3 λ 3 0.533 (9) 0.531 (9) 
4 λ 4 0.025 0.032 

number of new infections per untreated SS+ case 
5 βP 0.848 (1) 0.830 (3) 

number of new infections per SS+ case that failed treatment 
6 ΒPF 0.802 (4) 0.805 (4) 

proportion of new TB infections entering latent slow-progressor pool 
7 pS0 -0.711 (7) -0.697 (7) 
8 pS1 -0.374 (11) -0.341 (13) 
9 pS2 -0.272 (16) -0.318 (15) 

10 pS3 -0.327 (15) -0.310 (16) 
11 pS4 0.018 0.009 

rate of spontaneous recovery to latency 
12  -0.143 -0.039 
13  -0.042 -0.026 
14  -0.017 -0.0003 
15  -0.139 -0.125 
16  -0.020 -0.067 

relapse rate from failed treatment class to active disease 
17  -0.330 (14) -0.323 (14) 
18  -0.044 -0.073 
19  -0.011 0.021 
20  -0.041 -0.041 
21  -0.032 -0.029 

proportion of new active cases with SS+ disease 
22 sP0 0.565 (8) 0.545 (8) 
23 sP1 0.035 0.031 
24 sP2 0.072 0.137 
25 sP3 0.845 (2) 0.844  (1) 
26 sP4 0.180 0.177 

rate of conversion from SS to SS+ disease 
27  0.007 -0.014 
28  0.040 0.032 
29  -0.009 0.001 
30  0.047 0.012 
31  -0.016 0.005 
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base default rate for DOTS and non-DOTS programs 
32 D 0.741 (5) 0.754 (5) 

case-detection rate 
33 θ0 -0.833 (3) -0.833 (2) 
34 θ1 -0.109 -0.145 
35 θ2 -0.024 -0.070 
36 θ3 -0.405 (10) -0.443 (10) 
37 θ4 -0.027 0.005 

proportion of cases that return to active disease after completing treatment 
38 qcomplete,0 0.356 (13) 0.394 (11) 
39 qcomplete,1 0.003 0.050 
40 qcomplete,2 0.0004 -0.015 
41 qcomplete,3 0.224 (17) 0.219 (17) 
42 qcomplete,4 0.004 -0.031 

proportion of cases that enter failed treatment class after completing treatment 
43 vcomplete,0 0.715 (6) 0.731 (6) 
44 vcomplete,1 0.040 0.110 
45 vcomplete,2 0.069 0.043 
46 vcomplete,3 0.374 (12) 0.353 (12) 
47 vcomplete,4 0.015 0.003 

 
 
 
Note: PRCC values for key variables with respect to reductions in incidence when we 

projected the runs to 2030, relative to 2005, at a stable HIV prevalence of 6.7%. We used 

the 1,000 parameter sets that provided the best goodness-of-fit (GF) scores (Fig. 1) when 

the model was calibrated to fit TB and HIV data in Kenya up to, and including: (a) 1997, 

and (b) 2004. Numerical subindices indicate HIV infection status (0, uninfected, and 

numbers 1-4 correspond to the WHO HIV disease stages I-IV). We include the relative 

ranking of the PRCCs in parenthesis, with only those with absolute values >0.2 ranked.  
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Fig. S1. Study schematic.  
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Note: We contrasted HIV and TB trends reported for Kenya by integrating person-level 

information for both diseases in a mathematical model and calibrating the model to 

country-level TB and TB-HIV measures spanning the period 1980-2004. The model 

cannot reconcile the substantial rise in TB numbers in light of the decreasing HIV 

numbers. We discuss potential causes for the reported discrepancies. 
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Fig. S2. TB-HIV model diagrams. A) TB transmission, treatment, and mortality in an 

HIV-free population were represented by progression through 42 categories. B) In an 

HIV infected population, HIV incidence, progression, and mortality is accounted by 5 

stages. C) Details of the TB reinfection flow from the ‘fully recovered HIV+ stage III’. 

This pattern applies to all other HIV stages. Each HIV stage includes the 42 TB 

categories for a total of 210 combined TB/HIV categories (Table S1). 
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Fig. S3. Historical reconstruction of HIV prevalence following trends reported by 

Cheluget et al.24 and TB treatment options in Kenya.  
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Note: Each simulation ran from a virgin epidemic until equilibrium, at which point we 

assumed conditions for the year 1960 were reached.  
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Fig. S4. Reported TB case notifications for Kenya and model output calibrated to 

various TB and joint TB-HIV measures reported for the period 1980-2004, 

following a monotonically increasing HIV epidemic that reaches a prevalence of 

22.7% in 2005.  
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